
: #Laughs |Theorem: n=n+1Proof:(n+1)^2 = n^2 + 2*n + 1Bring 2n+1 to the left:(n+1)^2 - (2n+1) = n^2Substract n(2n+1) from both sides and factoring, we have:(n+1)^2 - (n+1)(2n+1) = n^2 - n(2n+1)Adding 1/4(2n+1)^2 to both sides yields:(n+1)^2 - (n+1)(2n+1) +
#Laughs |Theorem: n=n+1Proof:(n+1)^2 = n^2 + 2*n + 1Bring 2n+1 to the left:(n+1)^2 - (2n+1) = n^2Substract n(2n+1) from both sides and factoring, we have:(n+1)^2 - (n+1)(2n+1) = n^2 - n(2n+1)Adding 1/4(2n+1)^2 to both sides yields:(n+1)^2 - (n+1)(2n+1) + 1/4(2n+1)^2 = n^2 - n(2n+1) + 1/4(2n+1)^2This may be written:[ (n+1) - 1/2(2n+1) ]^2 = [ n - 1/2(2n+1) ]^2Taking the square roots of both sides:(n+1) - 1/2(2n+1) = n - 1/2(2n+1)Add 1/2(2n+1) to both sides:n+1 = n
Intraday stocks under 100 NSE India Twitter of India
More posts by @FunnyJohny

: #Laughs Definition of ProgrammerProgrammer:A person who passes as an exacting expert on the basis of being able to turn out, after innumberable poundings, an infinite series of incomprehensive answers calculated with micrometric precisions from vague assu

: #Laughs During training exercises, the lieutenant who was driving down a muddy back road encountered another car stuck in the mud with a red-faced colonel at the wheel.
0 Comments
Sorted by latest first Latest Oldest Best
Terms of Use Create Support ticket Your support tickets Stock Market News! © desicheers.com2025 All Rights reserved.